Structure of Bis(ethylenediamine)copper(II) Tetracyanonickelate(II)

By J. Lokaj
Laboratory of Central Chemical Research, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Czechoslovakia
K. Gyerová and A. Sopková
Department of Inorganic Chemistry, Faculty Sciences, University of P. J. Safarik, 04154 Kosice, Czechoslovakia

J. Sivý and V. Kettmann
Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Czechoslovakia

and V. Vrábel
Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Czechoslovakia

(Received 8 April 1991; accepted 23 May 1991)

Abstract

Cu}\left(\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{4}\right)\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right], \quad M_{r}=346 \cdot 5\), triclinic, $\quad P \overline{1}, \quad a=6.460(9), \quad b=7.230(10), \quad c=$ 7.864 (15) $\AA, \quad \alpha=106.81$ (13), $\quad \beta=91.51$ (14), $\gamma=$ 106.94 (12) ${ }^{\circ}, V=333.9$ (9) $\AA^{3}, Z=1, D_{m}=1.71(1)$, $D_{x}=1.723 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $3.55 \mathrm{~mm}^{-1}, F(000)=177, T=293 \mathrm{~K}$, final $R=0.056$ for 1212 unique observed reflections. The structure consists of centrosymmetric $\left[\mathrm{Cu}(\mathrm{en})_{2}\right]^{2+}$ (en $=$ ethylenediamine) cations and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions linked together by two of the CN groups (the remaining two act as unidentate ligands) to form infinite chains running along the [111] direction. Bridging by the CN groups is clearly unsymmetrical $[\mathrm{Ni}-\mathrm{C}=$ 1.850 (4) and $\mathrm{Cu}-\mathrm{N}=2.533$ (4) \AA], leading to fourcoordinate $\mathrm{Ni}^{\mathrm{HI}}$ species alternating with axially distorted octahedral $\mathrm{Cu}^{\mathrm{II}}$ groups along the chain [the equatorial $\mathrm{Cu}-\mathrm{N}$ distances are 1.997 (3) and $2 \cdot 001$ (3) \AA §.

Experimental. The title compound, (I), was prepared by mixing equimolar amounts of $\mathrm{K}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ and $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ (dissolved in $\mathrm{H}_{2} \mathrm{O}$). The resulting precipitate was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ and dissolved in ethylenediamine/ethanol. Finally, $4-5$ volumes of $\mathrm{C}_{6} \mathrm{H}_{6}$ (or $\mathrm{C}_{6} \mathrm{D}_{6}$) were added and allowed to stand until crystals appeared.
Crystal size: $1.0 \times 0.6 \times 0.4 \mathrm{~mm}, D_{m}$ by flotation in bromoform-cyclohexane, Weissenberg photographs consistent with Laue symmetry $\overline{1}$. Syntex $P 2_{1}$ diffractometer; unit-cell parameters by least-squares refinement of 22 reflections, $7<2 \theta<26^{\circ}$; intensity data ($h=0$ to $8, k=-9$ to $8, l=-10$ to 9) collected
with graphite-monochromated Mo $K \alpha$ radiation, $\theta-2 \theta$ scan mode, variable scan speed, scan width 2° (in 2θ) plus $\alpha_{1}-\alpha_{2}$ dispersion. Two standard reflections measured every 100 reflections, these varied by less than 5%; intensities corrected for Lorentzpolarization effects but not for absorption; 1550 unique reflections, $2 \theta \leq 55^{\circ}$, 1212 with $I \geq 2 \sigma(I)$ considered observed and included in the refinement. Structure solved by the heavy-atom method using XFPS (Pavelčík, 1986) and refined by block-diagonal least-squares methods, anisotropic thermal parameters for non-H atoms, \mathbf{H} atoms fixed at calculated positions with isotropic thermal parameters set to $B_{\text {eq }}$ of the bonded atoms; in final cycle $R=0.056, w R$ $=0.073$ for observed reflections only, $S=1.51$, $(\Delta / \sigma)_{\text {max }}=0.03$, function minimized $\sum w(\Delta F)^{2}$, where $w^{-1}=\sigma^{2}\left(F_{o}\right)+\left(C\left|F_{o}\right|\right)^{2}\left[\sigma\left(F_{o}\right)\right.$ derived from pulse statistics and $C=0.018$, in order to make $w(\Delta F)^{2}$ approximately independent of $\left|F_{o}\right|$ and $\left.\sin \theta / \lambda\right]$, max. and min . heights in final $\Delta \rho$ synthesis 0.86 and $-0.77 \mathrm{e} \AA^{-3}$. Scattering factors for neutral atoms from International Tables for X-ray Crystallography (1974, Vol. IV); all calculations except XFPS performed with local version of $N R C$ (1973).
Final atomic coordinates of non- H atoms and equivalent isotropic B 's are listed in Table 1,* bond

[^0]Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}$
$\mathrm{Cu}(1)$	0	0	0	$2 \cdot 12(2)$
$\mathrm{Ni}(1)$	5000	5000	5000	$1 \cdot 96(2)$
$\mathrm{N}(1)$	$-898(5)$	$-2645(5)$	$526(4)$	$2 \cdot 67(9)$
$\mathrm{N}(2)$	$-1604(5)$	$923(5)$	$2057(4)$	$2 \cdot 81(10)$
$\mathrm{N}(3)$	$3520(6)$	$1081(5)$	$2048(5)$	$3 \cdot 38(10)$
$\mathrm{N}(4)$	$1617(6)$	$6152(6)$	$3252(5)$	$3 \cdot 85(13)$
$\mathrm{C}(1)$	$-2698(7)$	$-2654(7)$	$1622(6)$	$3 \cdot 67(13)$
$\mathrm{C}(2)$	$-2139(8)$	$-607(7)$	$2975(6)$	$3 \cdot 85(15)$
$\mathrm{C}(3)$	$4101(6)$	$2539(6)$	$3188(5)$	$2 \cdot 51(11)$
$\mathrm{C}(4)$	$2882(6)$	$5754(6)$	$3960(5)$	$2 \cdot 65(12)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

| $\mathrm{Cu}(1)-\mathrm{N}(1)$ | $1.997(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(3)$ | $1.850(4)$ |
| :--- | :---: | :--- | ---: | ---: |
| $\mathrm{Cu}(1)-\mathrm{N}(2)$ | $2.001(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(4)$ | $1.864(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.465(6)$ | $\mathrm{C}(3)-\mathrm{N}(3)$ | $1.123(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.487(7)$ | $\mathrm{C}(4)-\mathrm{N}(4)$ | $1.125(6)$ |
| $\mathrm{C}(2)-\mathrm{N}(2)$ | $1.455(6)$ | | |
| $\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$ | $84.6(1)$ | $\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$ | $108.7(4)$ |
| $\mathrm{Cu}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $107.9(3)$ | $\mathrm{C}(3)-\mathrm{Ni}(1)-\mathrm{C}(4)$ | $88.1(2)$ |
| $\mathrm{Cu}(1)-\mathrm{N}(2)-\mathrm{C}(2)$ | $108.7(3)$ | $\mathrm{Ni}(1)-\mathrm{C}(3)-\mathrm{N}(3)$ | $177.2(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $107.3(4)$ | $\mathrm{Ni}(1)-\mathrm{C}(4)-\mathrm{N}(4)$ | $176.6(4)$ |

distances and angles in Table 2. A stereoview of the structure and the numbering scheme is given in Fig. 1.

Related literature. Following the report (Williams, Larson \& Cromer, 1972) that the mixed-valence copper cyanide ethylenediamine complex, $\mathrm{Cu}_{2}^{\mathrm{I}}(\mathrm{CN})_{4}{ }^{-}$ $\mathrm{Cu}^{\mathrm{II}}(\mathrm{en})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (II), forms a three-dimensional network in the solid state, we attempted to prepare a

Fig. 1. A perspective view of the cation and anion and the numbering of the atoms.
$\mathrm{C}_{6} \mathrm{H}_{6}$ (or $\mathrm{C}_{6} \mathrm{D}_{6}$) clathrate of the stoichiometrically related system $\mathrm{Ni}(\mathrm{CN})_{4}-\mathrm{Cu}(\mathrm{en})_{2}$. However, as revealed by this crystal-structure determination, the replacement of the $\left[\mathrm{Cu}_{2}^{\mathrm{I}}(\mathrm{CN})_{4}\right]^{2-}$ by $\left[\mathrm{Ni}^{\mathrm{II}}(\mathrm{CN})_{4}\right]^{2-}$ anion causes a conversion of the three-dimensional framework into a chain structure. Consequently, in contrast to (II), there is no hole formation in the present structure (I) and, as a result, no clathrate formation was observed.

References

NRC (1973). Crystallographic Programs for the IBM360 System. Accession Nos. 133-147. J. Appl. Cryst. 6, 309-346.
PavelČík, F. (1986). J. Appl. Cryst. 19, 488-491.
Williams, R. J., Larson, A. C. \& Cromer, D. T. (1972). Acta Cryst. B28, 858-864.

Acta Cryst. (1991). C47, 2448-2451

Structure of Tetracarbonyl[3,6-bis(pyridin-2-yl)-2,5-dihydro-1,2,4,5-tetrazine]tungsten(0)

By Ronald Hage, Rudolf A. G. de Graaff and Jaap G. Haasnoot
Department of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

and Graham Russell, Conor Long and Johannes G. Vos*
School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

(Received 6 November 1990; accepted 5 June 1991)

Abstract. $\left[\mathrm{W}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{4}\right], \quad M_{r}=534 \cdot 14$, mono-
clinic
$22_{1} / c, \quad a=15.327(2), \quad b=13.993(2), c=$

[^1]0108-2701/91/112448-04\$03.00
18.526 (2) $\AA, \beta=114.00$ (1) ${ }^{\circ}, V=3629.7$ (9) $\AA^{3}, Z=$ $8, D_{x}=1.95 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \mu=$ $6.535 \mathrm{~mm}^{-1}, F(000)=2032, T=298 \mathrm{~K}, R(w R)=$ 0.023 (0.030) for 5538 unique observed reflections [I
© 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54285 (10 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

